Does viscosity describe the kinetic barrier for crystal growth from the liquidus to the glass transition?

نویسندگان

  • Marcio Luis Ferreira Nascimento
  • Edgar Dutra Zanotto
چکیده

An analysis of the kinetic coefficient of crystal growth U(kin), recently proposed by Ediger et al. [J. Chem. Phys. 128, 034709 (2008)], indicates that the Stokes-Einstein/Eyring (SE/E) equation does not describe the diffusion process controlling crystal growth rates in fragile glass-forming liquids. U(kin) was defined using the normal growth model and tested for crystal data for inorganic and organic liquids covering a viscosity range of about 10(4)-10(12) Pa  s. Here, we revisit their interesting finding considering two other models: the screw dislocation (SD) and the two-dimensional surface nucleated (2D) growth models for nine undercooled oxide liquids, in a wider temperature range, from slightly below the melting point down to the glass transition region T(g), thus covering a wider viscosity range: 10(1)-10(13) Pa  s. We then propose and use normalized kinetic coefficients (M(kin)) for the SD and 2D growth models. These new kinetic coefficients restore the ability of viscosity to describe the transport part of crystal growth rates (M(kin)∼1/η and ξ∼1) from low to moderate viscosities (η<10(6) Pa  s), and thus the SE/E equation works well in this viscosity range for all systems tested. For strong glasses, the SE/E equation works well from low to high viscosities, from the melting point down to T(g)! However, for at least three fragile liquids, diopside (kink at 1.08T(g), η=1.6×10(8) Pa  s), lead metasilicate (kink at 1.14T(g), η=4.3×10(6) Pa  s), and lithium disilicate (kink at 1.11T(g), η=1.6×10(8) Pa  s), there are clear signs of a breakdown of the SE/E equation at these higher viscosities. Our results corroborate the findings of Ediger et al. and demonstrate that viscosity data cannot be used to describe the transport part of the crystal growth (via the SE/E equation) in fragile glasses in the neighborhood of T(g).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Influence of Polysaccharides on the Glass Transition in Frozen Sucrose Solutions and Ice Cream

The objective of this study was to describe further the mechanism by which polysaccharide stabilizers contribute to stability of frozen dairy desserts. The influence of stabilizers on the thermal properties and viscosity of carbohydrate solutions at subzero temperatures, on the thermal properties of ice cream mix, and on ice crystallization and growth in ice cream were investigated. Polysacchar...

متن کامل

Kinetics and mechanisms of crystal growth and diffusion in a glass-forming liquid.

Extensive data on the viscosity, covering 15 orders of magnitude, and crystal growth rate, covering seven orders of magnitude, of liquid diopside (CaO.MgO.2SiO(2)) were collected in a wide range of undercoolings from 1.10T(g) to 0.99T(m) (T(g) is the glass transition temperature and T(m) the melting point). The raw growth rate data were corrected for the increased interfacial temperature produc...

متن کامل

Kinetics of Ceramic Phase Crystallization in a Glass Derived from Wastes of Iron and Steel Industry

Intensified environmental regulations have posed numerous challenges in the disposal of industrial wastes. The steel industry is one of the biggest production industries, with a considerable amount of daily wastes. Production of glass-ceramic from the steel industry waters is one of the proper solutions for this problem. In this study, the application utilization of different wastes (such as bl...

متن کامل

EFFECT OF SPIRAL DESIGN ON CRYSTAL ORIENTATION DURING SINGLE CRYSTAL GROWTH

Geometrical design of the spiral crystal selector can affect crystal orientation in the final single crystal structure. To achieve a better understanding of conditions associated with the onset of crystal orientation in a spiral crystal selector, temperature field was investigated using three-dimensional finite element method during the process. Different geometries of spiral crystal selec...

متن کامل

تأثیر عنصر نایوبیم بر افزایش قابلیت شیشه‌ای شدن آلیاژهای آمورف پایه آهن با ترکیب (Fe55-xCr18Mo7B16C4Nbx (X=0, 3, 4, 5

In this research, Glass Form Ability (GFA) has been investigated in the new class of Fe-based amorphous alloys. Indeed, the main purpose is to evaluate the effects of alloying with niobium on glass form ability of Fe55-xCr18Mo7B16C4Nbx (X=0, 3, 4, 5) alloys. Vacuum induction melting (VIM) was utilized for production of primary ingots and melt spinning process was used for production of thin ri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 133 17  شماره 

صفحات  -

تاریخ انتشار 2010